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Abstract

A mathematical model was developed previously (by Horáček and Švec in 2002a) for studying the influence of the

geometrical, viscoelastic and vibrational characteristics of the human vocal folds on their self-sustained oscillations in

phonatory air-flow. That model is advanced here by: (i) extending the equations for unsteady aerodynamic forces from

small to realistic vibrational amplitudes of the vocal folds; (ii) implementing the Hertz model of impact forces for vocal-

fold collisions; (iii) adjusting the elastic support of the vocal-fold-shaped vibrating element for more flexible tuning of

the natural frequencies of vibrations; and (iv) moving from frequency domain calculations towards on-line simulations

in the time domain. Using a parabolic vocal-fold shape and vocal-fold natural frequencies close to 100Hz, the model

exhibits vibrations for flow velocities, flow volumes and subglottal pressures above 0.5m/s, 0.1 l/s, and 0.15 kPa,

respectively. During collisions, the model reveals impact stress values up to 3 kPa. As these values are close to those

measured in humans, the model is found suitable for studying phenomena and estimating values, which are difficult to

observe and measure in the living vocal folds.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Vibrations of vocal folds are of extraordinary importance for production of human voice. As the vocal folds are

difficult to study in vivo, the mathematical and numerical models could be very helpful for understanding the

mechanism of voice production. First lumped-parameters dynamic models of the vocal-fold self-oscillations were

developed already at the beginning of seventies of the last century (Ishizaka and Flanagan, 1972) and their different

variations remain to be widely used (Liljencrants, 1991; Pelorson et al., 1994; Herzel and Knudsen, 1995; Story and

Titze, 1995; Lous et al., 1998; De Vries et al., 1999; Ikeda et al., 2001). New versions of the self-oscillating vocal-fold

models have been described during the last 2 years (LaMar et al., 2003; Sciamarella and d’Alessandro, 2004; Adachi and

Yu, 2005; Drioli, 2005).

A short overview of numerous existing models can be found, e.g., in the dissertation of Kob (2002). A frequent

problem of the developed mathematical models is the relationship of their input parameters to the real material
e front matter r 2005 Elsevier Ltd. All rights reserved.
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properties of the vocal folds and to the aerodynamic properties of the phonatory airstream. The aerodynamic forces

have usually been approximated by quasi-steady forces given by the Bernoulli law. The latest finite-element models

developed for vibration of the vocal folds in viscous fluid flow described by the Navier–Stokes equations (Thomson et

al., 2003; Alipour et al., 2000) are still in a preliminary phase and their reliability and usability for an on-line numerical

simulation of the vocal-fold self-oscillations with impacts is limited. A sufficiently accurate description of unsteady

viscous fluid flow characteristics measured on oscillating rigid replicas of vocal folds during their collisions appears

problematic (Deverge et al., 2003). Similar problems of flow-induced vibrations for flows in collapsible tubes were

studied, e.g., by Cancelli and Pedley (1985), where the dominant mechanism for self-sustained vibrations relied on flow

separation and a pressure recovery downstream of the narrowest section of the tube.

The authors have developed a linear aeroelastic model in order to study the influence of different geometrical

and elastic properties of the vocal folds on phonation thresholds (Horáček and Švec, 2002a, b). An inviscid

incompressible 1-D fluid flow theory was used in the model for expressing the unsteady aerodynamic forces and

the parameters of the model, i.e., the mass, stiffness and damping matrices were approximately related to the geometry,

size and material density of real vocal folds as well as to the known or prescribed fundamental natural frequencies

and damping. In the current paper, the model is advanced by: (i) extending the equations for unsteady aerodynamic

forces from small perturbations to realistic vibrational amplitudes; (ii) implementing the Hertz model of impact

forces for vocal fold collisions; (iii) improving the tuning possibilities of the natural frequencies of the vocal

folds by replacing the continuous elastic foundation by a two-spring elastic support; and (iv) moving from

frequency domain calculations towards on-line simulations in the time domain. First the mathematical model is

formulated and the solution procedures are presented, then the results of the on-line simulations are demonstrated,

and finally the model behaviour is related to the real vocal folds by comparing its output data to values measured in

living subjects.
2. Mathematical model

The model of the glottis with the vocal folds is shown in Fig. 1 as a channel with planar symmetry conveying air.

The length of the channel, L, is measured parallel to both the plane of symmetry and the direction of air-flow.
false
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Fig. 1. Schematic of the glottal space.
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The channel walls are created by two vocal-fold-shaped rigid bodies of mass m and moment of inertia I, which

are vibrating symmetrically in the opposite phase with identical amplitudes on an elastic foundation. The rigid

bodies oscillate in the fluid of density r flowing in the channel with the mean flow velocity U0 at the inlet ðx ¼ 0Þ,

where the cross-section of the channel equals 2H0. The minimum cross-section of the channel for a steady state

at zero air-flow, the so-called glottal width, is denoted by 2g (Fig. 1). The vibrating element has a smooth

convergent glottal inlet and a short, not highly divergent, outlet, which is terminated with a sharp edge at which the

flow separation occurs. Symmetric oscillations of the vocal folds are assumed, allowing modelling only a half of the

glottal region (Fig. 2(a)).

2.1. Equations of motion for the vocal-fold-shaped vibrating element

The vocal fold can be approximated by a two-degree-of-freedom rigid body element with a defined shape aðxÞ, where

x is the axial coordinate. The element is supported by two discrete springs with stiffnesses c1 and c2 (Fig. 2) and its

vibration is described by its rotation and translation. An equivalent three-mass system can be used to formulate the

equations of motion of the element, based on the three conditions of identical total mass, static moment and moment of

inertia of the rigid body. The vibrating rigid body with mass m, moment of inertia I, and the centre of gravity T at the
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Fig. 2. Two-degree-of-freedom model.
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location e (the eccentricity—see Fig. 2(a)) is replaced by the masses

m1;2 ¼
1

2l2
ðI þ me2 � melÞ; m3 ¼ m 1�

e

l

� �2� �
�

I

l2
(1)

joined together by a rigid massless rod of the total length L. The distance between the masses m1 and m2 is denoted as 2l

and the distance L1 from the upstream end of the rod defines their position (see Fig. 2(b)). The displacements of the

masses m1 and m2 are denoted as w1ðtÞ and w2ðtÞ, where t is time. The length L should approximately correspond to the

anatomical data; the lengths l and L1 can, however, be varied for the purpose of tuning of the model.

The displacement of the rigid massless rod can be written as

wðx; tÞ ¼ ðx � L1ÞV1ðtÞ þ V2ðtÞ, (2)

where the rotation and translation of the rigid body element was introduced as

V1ðtÞ ¼
w2ðtÞ � w1ðtÞ

2l
; V2ðtÞ ¼

w2ðtÞ þ w1ðtÞ

2
. (3)

When the glottis is open, the force and moment equilibrium equations can be used to express the equivalent

excitation aerodynamic forces F1ðtÞ and F2ðtÞ acting on the vocal folds (Fig. 2(b))

F1ðtÞ ¼
h

2

Z L

0

1�
x

l
þ

L1

l

� �
~pðx; tÞdx; F2ðtÞ ¼

h

2

Z L

0

1þ
x

l
�

L1

l

� �
~pðx; tÞdx, (4)

where h is the width of the channel (identical with the width of the rigid body) and ~pðx; tÞ is the air pressure along the
vibrating body surface. The width of the channel is measured perpendicular to the direction of air-flow and parallel to

the plane of symmetry.

After expressing the potential and kinetic energies of the system in a similar way as in the previous article (Horáček

and Švec, 2002a) and their substitution in the Lagrange equations, the equations of motion are obtained in the form

M €Vþ B _Vþ KVþ F ¼ 0, (5)

where the following displacement and excitation force vectors were introduced

V ¼
V1ðtÞ

V2ðtÞ

" #
; F ¼

F1ðtÞ

F2ðtÞ

" #
(6)

and where M;B;K are the structural mass, damping and stiffness matrices

M ¼

�lm1 m1 þ
m3

2

þlm2 m2 þ
m3

2

2
64

3
75; B ¼ �1Mþ �2K; K ¼

�c1l c1

þc2l c2

" #
. (7)

The damping matrix B represents a proportional model of structural damping; �1; �2 are constants adjusted hereafter
according to the desired damping ratios for the two natural modes of vibration of the system. The structure of the

matrices M and K reveals that a mass coupling caused by the mass m3 is generally in the system even if F ¼ 0.

2.2. Aerodynamic unsteady forces for open glottis

The unsteady continuity and 1-D Euler equations for incompressible fluid can be used to express the aerodynamic

forces acting on the vibrating element (Norton, 1989; Horáček and Švec, 2002a). The equation for unsteady pressure in

the glottis was derived in a linear form by Horáček and Švec (2002a, p. 937, Eq. (16)) supposing only small flow velocity

perturbations ð ~uq ~u=qx ! 0Þ. Here, we generalize the equation by incorporating also the nonlinear term ~uq ~u=qx. Using

the velocity potential Fðx; tÞ for the unsteady component of the flow velocity ~uðx; tÞ ¼ qFðx; tÞ=qx, the unsteady

component of the pressure can be formulated in a nonlinear form as

~pðx; tÞ ¼ �r
qF
qt

þ ŪðxÞ
qF
qx

þ
1

2

qF
qx

� �2" #
, (8)

where the mean (steady) flow velocity in the glottis for x 2 h0;Li can be expressed from the continuity equation as

ŪðxÞ ¼ U0=½1� aðxÞ=H0�. (9)
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J. Horáček et al. / Journal of Fluids and Structures 20 (2005) 853–869 857
Using the boundary conditions for the flow at the inlet ðx ¼ 0Þ and outlet ðx ¼ LÞ

~u ¼ qF=qx ¼ 0jx¼0 and ~p ¼ 0jx¼L, (10)

considering the displacement wðx; tÞ5H0 and using the same procedure as in the previous paper (Horáček and Švec,

2002a, pp. 937–938, Eqs. (9)–(10)) the unsteady component of the pressure can be written as

~pðx; tÞ ¼ � rfK1ðxÞ½V1ðtÞ�
2 þ K2ðxÞV2ðtÞ þ K3ðxÞ½V2ðtÞ�

2 þ K4ðxÞ½ _V1ðtÞ�
2 þ K5ðxÞ _V2ðtÞ þ K6ðxÞV2ðtÞ _V2ðtÞ

þ K7ðxÞ½ _V2ðtÞ�
2 þ K8ðxÞ _V1ðtÞ þ K9ðxÞ _V1ðtÞV1ðtÞ þ K10ðxÞ _V1ðtÞV2ðtÞ þ K11ðxÞ _V1ðtÞ _V2ðtÞ þ K12ðxÞV1ðtÞ

þ K13ðxÞV1ðtÞV2ðtÞ þ K14ðxÞV1ðtÞ _V2ðtÞ þ K15ðxÞ €V1ðtÞ þ K16ðxÞ €V2ðtÞg, ð11Þ

where the coefficients KiðxÞði ¼ 1; 2; . . . ; 16Þ are complicated functions, which are specified in Appendix A. The general
forms of Eq. (11) for pressure as well as the coefficients KiðxÞ were calculated by using the symbolic manipulation

capabilities of the software Mathematica.

Then, the aerodynamic forces F1ðtÞ and F2ðtÞ can be expressed as nonlinear functions of the displacements V1ðtÞ and

V2ðtÞ by calculating the integrals (4). Using the Mathematica for numerical integration of the coefficients KiðxÞ the

resulting aerodynamic forces exciting the vocal folds are obtained for open glottis:

F1ðtÞ ¼ � rfK int 1
1 ½V1ðtÞ�

2 þ K int 1
2 V2ðtÞ þ K int 1

3 ½V2ðtÞ�
2 þ K int 1

4 ½ _V1ðtÞ�
2 þ K int 1

5
_V2ðtÞ þ K int 1

6 V2ðtÞ _V2ðtÞ

þ K int 1
7 ½ _V2ðtÞ�

2 þ K int 1
8

_V1ðtÞ þ K int 1
9

_V1ðtÞV1ðtÞ þ K int 1
10

_V1ðtÞV2ðtÞ þ K int 1
11

_V1ðtÞ _V2ðtÞ þ K int 1
12 V1ðtÞ

þ K int 1
13 V1ðtÞV2ðtÞ þ K int 1

14 V1ðtÞ _V2ðtÞ þ K int 1
15

€V1ðtÞ þ K int 1
16

€V2ðtÞg, ð12Þ

F2ðtÞ ¼ � rfK int 2
1 ½V1ðtÞ�

2 þ K int 2
2 V2ðtÞ þ K int 2

3 ½V2ðtÞ�
2 þ K int 2

4 ½ _V1ðtÞ�
2 þ K int 2

5
_V2ðtÞ

þ K int 2
6 V2ðtÞ _V2ðtÞ þ K int 2

7 ½ _V2ðtÞ�
2 þ K int 2

8
_V1ðtÞ þ K int 2

9
_V1ðtÞV1ðtÞ þ K int 2

10
_V1ðtÞV2ðtÞ

þ K int 2
11

_V1ðtÞ _V2ðtÞ þ K int 2
12 V1ðtÞ þ K int 2

13 V1ðtÞV2ðtÞ þ K int 2
14 V1ðtÞ _V2ðtÞ þ K int 2

15
€V1ðtÞ þ K int 2

16
€V2ðtÞg, ð13Þ

where the following notation was introduced:

K int 1
i ¼ h

Z L

0

KiðxÞ
l þ L1 � x

2l
dx and K int 2

i ¼ h

Z L

0

KiðxÞ
l � L1 þ x

2l
dx; i ¼ 1; . . . ; 16. (14)

2.3. Model of the vocal-fold collisions

The Hertz model of impact (Brepta and Prokopec, 1972; Stronge, 2000; Půst and Peterka, 2003) is implemented here

to account for vocal-fold collisions. The impact force FH is considered as

FH ¼ kHd3=2ð1þ bH
_dÞ; kH ffi

4

3

E

1� m2H

ffiffi
r

p
, (15)

where d is the penetration of the vocal-fold element through the contact plane (see Fig. 3), E is Young’s modulus, mH is

the Poisson ratio, bH is a damping factor and r is the radius of curvature of the impacting body surfaces approximated

by the shape aðxÞ of the vocal-fold model in the contact point according to the equation

1

r
¼

jd2a=dx2j

1þ ðda=dxÞ2
� �3=2 . (16)

The geometry of the vocal fold is approximated by a general parabolic function:

aðxÞ ¼ a1x þ ða2=2Þx
2. (17)

The moving surface of the vibrating vocal-fold element (see Fig. 3) is described by the function

yðx; tÞ ¼ aðxÞ þ wðx; tÞ ¼ aðxÞ þ ðx � L1ÞV1ðtÞ þ V2ðtÞ; x 2 h0;Li. (18)

From here the coordinates of the contact point can be determined as

xmaxðtÞ ¼ minfL;max½0;�½V1ðtÞ þ a1�=a2�g,

ymaxðtÞ ¼ y½xmaxðtÞ� ¼ a½xmaxðtÞ� þ ½xmaxðtÞ � L1�V1ðtÞ þ V2ðtÞ. ð19Þ
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Using these equations, the Hertz impact force (15) can be rewritten (see Fig. 3) in the form

FH ðtÞ ¼ kH ½ymaxðtÞ � H0�
3=2, (20)

where the damping factor bH in the contact is neglected.

During the impact, when the glottis is closed, the aerodynamic forces (12) and (13) are switched off. There are three

types of forces acting on the vocal-fold-shaped element during this time (Fig. 3): (i) the Hertz force, Eq. (20); (ii) the

subglottal pressure Psub, which is acting on the subglottal part of the element surface (this pressure equals the lungs

pressure Plungs and is kept steady as the lungs are considered a big air reservoir ðPlungs ¼ Psub ¼ const:Þ; and (iii) the
supraglottal pressure, which is acting on the supraglottal part of the element surface. That pressure is set here to zero

ðPsup ¼ 0Þ.

After integration of the pressure Psub ¼ Plungs in the interval x 2 h0; xmaxðtÞi, the aerodynamic force can be expressed
as FAðtÞ ¼ PsubxmaxðtÞh. Finally, the resulting forces in the equations of motion (5) during vocal-fold contact (see Figs. 2

and 3) can be approximated as

F1ðtÞ ¼ FH ðtÞ
L1 þ l � xmaxðtÞ

2l
þ PsubhxmaxðtÞ

L1 þ l � xmaxðtÞ=2

2l
,

F2ðtÞ ¼ FH ðtÞ
xmaxðtÞ � L1 þ l

2l
þ PsubhxmaxðtÞ

xmaxðtÞ=2� L1 þ l

2l
. ð21Þ

3. Numerical solution

3.1. Solution of the linearized problem—computation of stability boundaries

For calculating the stability boundaries, only small vibration amplitudes without collisions and small velocity

perturbations ð ~uq ~u=qx ! 0Þ can be considered. In this case, the perturbation pressure (8) is given by the simplified

equation

~p ¼ �r
qF
qt

þ ŪðxÞ
qF
qx

� �
. (22)
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That results in a substantial simplification of Eq. (11) for the pressure

~pðx; tÞ ¼ �r
€V1ðtÞK15ðxÞ þ €V2ðtÞK16ðxÞ þ _V1ðtÞK8ðxÞ þ _V2ðtÞK5ðxÞ

þV1ðtÞK12ðxÞ þ V2ðtÞK2ðxÞ

" #
. (23)

Subsequently, the linear approximation of the forces F1;2ðtÞ is given by Eqs. (12) and (13), where only the corresponding

constants K int 1
i ;K int 2

i ði ¼ 2; 5; 8; 12; 15; 16Þ are not equal to zero.
Substituting the linearized aerodynamic forces F1;2ðtÞ in the equations of motion (5) and dividing this equation by

ml=2 yields the following physically well-structured equations of motion of the coupled aeroelastic system in a linear

approximation:

M̄ €̄Vþ B̄ _̄Vþ K̄V̄ ¼
rhL3

mH0
M̂ €̄Vþ

U0

L
B̂ _̄Vþ

U2
0

L2
K̂V̄

� �
, (24)

where

M̄ ¼

�
I

ml2
þ

e

l

� �2
�

e

l

� �
1�

e

l

� �

þ
I

ml2
þ

e

l

� �2
þ

e

l

� �
1þ

e

l

� �
2
6664

3
7775; B̄ ¼ �̄1M̄þ �̄2K̄; K̄ ¼ O20

�1 1

c2 c2

c1 c1

2
64

3
75 (25)

are the dimensionless mass, damping and stiffness matrices for the rigid body vibrating in vacuo, O20 ¼ 2c1=m. The

expression

V̄ ¼
1 0

0 1=l

" #
V (26)

gives the vector of dimensionless displacements. The elements in the matrices of the aerodynamic mass M̂, damping B̂

and stiffness K̂, which are complicated functions of the channel geometry, are specified in an analytical form for the

special case L1 ¼ L=2 in Appendix B.
The unsteady aerodynamic forces on the right-hand side of Eq. (24) are obviously proportional to the dimensionless

added mass of fluid ðrhL3=mH0Þ and they have a lucid physical meaning. The first term corresponds to the aerodynamic

inertia forces, the second term to the aerodynamic damping forces ð�U0Þ related to the Coriolis forces, and the third

term to the aerodynamic stiffness forces ð�U2
0Þ, which are related to the centrifugal forces. The Coriolis and centrifugal

forces are increasing functions of the fluid flow velocity U0, causing aeroelastic instability and self-oscillations.

The numerical procedure for calculation of the stability boundaries from Eq. (24) was presented in the previous paper

by Horáček and Švec (2002a) and will only be outlined here. Assuming V̄ ¼ V̄0 e
st for the dynamic response, the

solution is given by the numerical computation of the eigenvalues s ¼ ReðsÞ þ iImðsÞ and eigenmodes TV̄0 ¼

ðV01;V02=lÞ for the eigenvalue problem. In this way, it is possible to calculate the critical flow velocity U0;cirit at which

the real part of the eigenvalue changes the sign from a negative ½ReðsÞo0� to a positive value ½ReðsÞ40�. Here, the
system either becomes unstable by divergence (when ImðsÞ ¼ 0), or it becomes unstable by flutter simulating the start

of phonation (when ImðsÞ40). The calculated stability boundaries for some of the relevant input parameters of the
model are presented in Figs. 4 and 5 (see also Section 5.1).
3.2. Solution for the nonlinear model—simulation of self-oscillations

In order to simulate the postcritical behaviour and study the self-oscillations of the vocal folds, the nonlinear model

was used and the numerical solution was implemented in the Mathematica 5 (Wolfram, 2003). The equations of motion

(5) were transformed into the system of four ordinary first-order differential equations:

_Z1 ¼ c1ðZ1;Z2;V1;V2Þ; _Z2 ¼ c2ðZ1;Z2;V1;V2Þ; _V1 ¼ Z1; _V2 ¼ Z2 (27)

and a fourth-order standard Runge–Kutta method with adaptive step size was used for the solution. The functions

c1;c2 were determined differently for the contact regime (see Eqs. (21)) and the non-contact regime (see Eqs. (12) and
(13)). The integrals (14) were pre-calculated for given input data before starting the on-line simulation.
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4. Basic input data for numerical analysis

The input parameters for the numerical examples and analysis were determined from the published data on the vocal

folds [e.g., Titze (1989)]. The density, thickness and length of the vocal folds were taken as follows: rh ¼ 1020 kg=m3,

L ¼ 6:8mm, h ¼ 10mm. A convex shape aðxÞ was considered according to Eq. (17), where the dimensionless coefficient

a1 ¼ 1:858 and a2 ¼ 319:722m�1 were used. This shape corresponds to the geometry of the vocal fold with an

intermediate bulging (Berry et al., 1994). From these data, the parameters needed for construction of the matrix M̄ were

calculated, i.e., the eccentricity e ¼ 0:77106� 10�3 m, the total mass m ¼ 2:6731� 10�4 kg and the moment of inertia
I ¼ 1:306� 10�9 kgm2. The air density value of r ¼ 1:2 kg=m3 was used.

The natural frequencies of the vibrating element and their bandwidths were selected to reflect the experimental data

obtained from the true vocal folds (Kaneko et al., 1981, 1983, 1987; Švec et al., 2000). The natural frequencies f 1, f 2
were varied in order to account for different vocal-fold adjustments (examples of some of the values used are shown in

Section 5). The 3 dB half-power bandwidths Df 1 and Df 2 were fixed to 23 and 29Hz, respectively. A tuning procedure,

based on solving an inverse problem, was used to find the stiffness coefficients c1; c2 of the elastic foundation and the
damping coefficients �̄1; �̄2 in the structural matrices B̄ and K̄ in Eq. (25). For calculating the coefficients �̄1; �̄2 for given
values Df 1 and Df 2, the procedure was the same as described in the previous paper (Horáček and Švec, 2002a). To

obtain the complex stiffness coefficients c1 and c2 for two prescribed natural frequencies f 1 and f 2, the following two

equations were used, which result from the equation of motion (5) for the undamped system ðB ¼ 0Þ vibrating in vacuo

ðF ¼ 0Þ:

½c1 þ ðm1 þ m3=4Þð2pf 1Þ
2
�½c2 þ ðm2 þ m3=4Þð2pf 1Þ

2
� � ðm2

3=16Þð2pf 1Þ
4
¼ 0 ði ¼ 1; 2Þ. (28)
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The use of a two-spring elastic support rather than an elastic continuous foundation appeared highly advantageous

here, as it enabled tuning of both the natural frequencies (in contrast to only one) and it avoided problems with complex

stiffness coefficients experienced in the authors’ original model. Symmetric positions of the springs at the distances

L1 ¼ L=2 and l ¼ 0:344L (see Fig. 2) were used as these provided optimal tuning possibilities: here both the coefficients

c1; c2 were real numbers for almost all the ratios f 2=f 141:02. This appears important, as the second natural frequency
f 2 of the vocal folds is, in optimal situations, expected to be close to f 1 (Liljencrants, 1991; Berry, 2001). However,

the vocal folds could vibrate also when f 2 is higher and further away from f 1 (Ishizaka and Flanagan, 1972;

Liljencrants, 1991).

For the impact model, the values E ¼ 8 kPa and mH ¼ 0:4 (Berry and Titze, 1996; De Vries et al., 1999) were used,
which according to Eq. (15) yielded the contact stiffness coefficient kH¼

:
730Nm�2=3. The damping in the contact was

neglected ðbH ¼ 0Þ in the numerical examples. Finally, the height H0 of the channel, for a given vocal-fold-shaped

element and a glottal half-width g, was expressed as H0 ¼ maxx2h0;Li aðxÞ þ g (see Fig. 2(a)).
5. Results of the numerical computations and simulations and their discussion

5.1. Stability map for the linearized model of the vocal-fold vibration

Fig. 4 shows the instability boundaries ðU0;critÞ of the model as the functions of the glottal half-width g. The

boundaries are shown for f 1 ¼ 100Hz and three higher natural frequencies f 2 ¼ 105Hz, f 2 ¼ 130Hz and f 2 ¼ 160Hz.

Two types of instabilities are observed in the model: divergence and flutter. The divergence instability occurs at narrow

glottal gaps ðgv0:1mmÞ above the critical flow velocity U0D. According to the linear approach it results in a suction of

the vocal folds together or their abduction without any vibration. The flutter instability takes place when the glottal gap

g is wider than approximately 0.1mm. Here, the vibrations start above the critical flow velocity U0F .

The U0F value is considerably different for the different ratios of the natural frequencies f 2=f 1: when the higher

natural frequency f 2 of the system approaches f 1 the instability boundaries for flutter become lower and the

initialization of vibrations (and thus the phonation) is easier. As the glottal gap is widened, however, the critical flow

velocities U0F generally rise, requiring higher flow values to start the vibrations and making the phonation more

difficult.

5.2. Phonation thresholds according to the linear model—comparison of the model to the known in vivo experimental data

The flutter stability boundaries of the model can be related to the phonation threshold values observed in humans.

For that, however, it is useful to replace the flow velocity and glottal gap values by the more easily measurable values of

the phonation threshold pressure (which corresponds to the critical subglottal pressure Psub;crit ¼ Plungs) and the

phonation threshold air-flow (which corresponds to the critical volume flow rate Qcrit). This can be done using the

Bernoulli and continuity equations for the steady components of the pressure P̄ðxÞ and the fluid velocity ŪðxÞ

Plungs ¼ P̄ðLÞ þ 1
2rŪ

2
ðLÞ and H0hU0 ¼ ½H0 � aðLÞ�hŪðLÞ. (29)

Assuming P̄ðLÞ ¼ Psup ¼ 0, the following approximate formula can be derived to relate the pressure in lungs to the air-

flow velocity:

Plungs ¼
1
2
rU2

0fH0=½H0 � aðLÞ�g2. (30)

The air-flow velocity U0 (m/s) is simply related to the mean glottal flow volume rate Q ð1=sÞ by the formula:

Q ¼ U02H0h. (31)

Eqs. (30) and (31) relate these quantities to the critical flow velocity for flutter ðU0;crit ¼ U0F Þ.

The flutter thresholds are presented in Fig. 5 showing the values of the calculated critical subglottal pressure Psub:crit
(Pa) versus the critical flow rates Qcrit (1/s) for various prephonatory glottal half-gaps (g ¼ 0:2–1mm) and for three
different ratios of the natural frequencies (f 1=f 2 ¼

100
105
, 150
155
and 200

205
). The corresponding flutter (fundamental) frequencies

F0 were always found close to the frequencies f 1 and f 2, i.e., F0 ’ 100, 150 and 200Hz, respectively. Fig. 5 reveals the

critical subglottal pressures and the critical air-flows of the model to be between 0.15 and 0.9 kPa and 0.1 and 0.9 1/s,

respectively, which compares well with the range of the values found in humans (Schutte, 1980). The graph shows an

increasing threshold pressure value with increasing F0, which is in agreement with measured data (e.g., Titze, 1992).

Also, the increase of the computed subglottal pressure Psub:crit with the glottal half-width g (see Figs. 4 and 5)
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Table 1

The comparison of the expected values Pth, Eq. (32) with the computed values Psub;crit from Eq. (24) for phonation thresholds at

different fundamental frequencies F 0

F0 (Hz) Psub;crit (Pa) Pth (Pa) (formula (32))

(computed—from Eq. (24))

Males Females

100 152 182 157

150 270 234 177

200 384 307 206

The glottal half-gap value of g ¼ 0:2mm was used for computation.
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corresponds qualitatively to the findings of Chan et al. (1997) in the studies on phonation threshold pressure in a

physical model of the vocal-fold mucosa.

A more detailed comparison is offered in Table 1, which relates the model thresholds to the expected phonation

threshold values calculated from the formula derived by Titze (1992) and Titze et al. (2003)

Pth ¼ 0:14þ 0:06ðF0=F0N Þ
2, (32)

where F0 is the fundamental (pitch) frequency and F0N is a nominal (speaking) fundamental frequency (F0N ¼ 120Hz

for males and F0N ¼ 190Hz for females). Again, the model values are not far from the expected values, suggesting the

model behaviour is in reasonable agreement with reality.

5.3. Simulation of the nonlinear oscillations of the vocal folds in time domain

Whereas the threshold states can be studied with the linear model, studying the postcritical behaviour of the vocal

folds including the impacts requires the nonlinear model. A typical starting phase of the on-line simulation is

demonstrated in Fig. 6. The input parameters of the simulation example correspond to the unstable (flutter) region in

the stability map in Fig. 4 for f 1 ¼ 100Hz and f 2 ¼ 105Hz. The motions w1ðtÞ and w2ðtÞ of the masses m1 and m2 are

shown in the phase plane in Figs. 6(a) and (b), respectively, and in the time domain with a marked impact duration in

each vibration period in Figs. 6(c) and (d). Initial conditions: w1ð0Þ ¼ w2ð0Þ ¼ 0:1mm and _w1ð0Þ ¼ _w2ð0Þ ¼ 0 for the

vocal-fold motion were assumed in this case. The glottal area SðtÞ, i.e., the minimal cross-sectional channel area:

SðtÞ ¼ 2hHðxmaxðtÞ; tÞ ¼ 2h½H0 � ymaxðtÞ� for noncontact phase ðymaxoH0Þ,

SðtÞ ¼ 0 for contact phase ðymaxXH0Þ (33)

is shown in the time domain in Fig. 6(e) and the unsteady component of the glottal pressure pðtÞ ¼ p̄ðx; tÞjx¼L�0:5 mm in

Fig. 6(f). The spectrum of the glottal pressure, which contains many harmonics, is shown in Fig. 7. The motion of the

vocal-fold model during one period of oscillations is animated in Fig. 8.

Fig. 9 shows the dependency of the fundamental vibration frequency F0 ¼ 1=T (flutter frequency) on the air-flow

velocity for three sets of the natural frequencies f 1 and f 2 and for three glottal half gaps g. The resulting F0 is close to

the f 1 and f 2 and slightly increases when increasing the air-flow velocity. Regular self-oscillations with stable F0 were

observed in a wide range of physiologically real input parameters ðU0; gÞ when the prescribed natural frequencies f 1 and

f 2 were close. When the second natural frequency f 2 was increased (e.g. f 2 ¼ 150Hz) while keeping the f 1 at 100Hz,

however, the model revealed rather unstable behaviour with significant hysteresis and sudden jumps between prevailing

subharmonic, regular and chaotic oscillations and impactless regimes.

Fig. 10 shows typical behaviour of the aeroelastic model for the natural frequencies f 1 ¼ 100Hz, f 2 ¼ 105Hz and the

glottal half-gap g ¼ 0:3mm. The behaviour corresponds to an experiment, in which the flow rate Q was incrementally

increased and decreased, and the open quotient OQ (defined as the open time of the glottis divided by the oscillatory

period T) was observed. When increasing the flow rate, the self-oscillations occurred above the critical value

Qcrit ffi 0:18 1=s. At the critical value, the vibration pattern was without collisions and OQ ffi 1. Above this flow rate

ðQ40:18 1=sÞ the regular self-oscillations with impacts occurred ðOQo1Þ. Further up, above the value of Q ffi 0:43 1=s,
the vibration regime changed from regular to quasiperiodic (subharmonic), which subsequently changed to chaotic

(irregular) once the value of Q ffi 0:46 1=s was crossed. For this value the corresponding subglottal pressure

Plungs ¼ 1:3 kPa, i.e., the so-called phonation instability pressure (Jiang et al., 2003; Jiang and Titze, 1993), was obtained
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Fig. 6. Example of numerical simulation of the self-oscillations: (a) and (b) phase-plane diagrams for displacement w1ðtÞ and w2ðtÞ,

respectively; (c) and (d) displacements w1ðtÞ and w2ðtÞ, respectively, with marked impact duration within each period of vibration; (e)

glottal area SðtÞ; and (f) glottal pressure pðtÞ ¼ ~pðx; tÞjx¼L�0:5 mm. The input parameters are the same as in Fig. 4, and the air-flow

velocity is U0 ¼ 1:6m=s, glottal half-gap g ¼ 0:2mm, prescribed natural frequencies f 1 ¼ 100Hz, f 2 ¼ 105Hz, time step of numerical

integration t ¼ 0:02ms, mean flow rate Q ¼ 0:18 l=s and pressure in lungs Plungs ¼ 380Pa.
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Fig. 8. Phases (animation) of the vocal-fold motion during one oscillation cycle; all parameters as in Fig. 6.
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Fig. 9. Fundamental frequency F0 for self-oscillations versus oncoming flow velocity U0 for various natural frequencies f 1, f 2 of the

vocal-fold model: m, f 1 ¼ 100Hz, f 2 ¼ 105Hz; ’, f 1 ¼ 150Hz, f 2 ¼ 155Hz; �, f 1 ¼ 200Hz, f 2 ¼ 205Hz; and for several glottal

half-gaps g: —, g ¼ 0:2mm; - - -, g ¼ 0:3mm; -.-.-, g ¼ 0:5mm.
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from Eq. (30). Decreasing subsequently the flow rate from the values Q40:46 1=s, the chaotic oscillations subsisted
down to Q ffi 0:43 1=s, revealing a hysteresis in the values of the phonation instability pressure. Similar, but much
smaller hysteresis was observed also for the values of the critical flow rate Qcrit. In comparison to the normally expected

values of the open quotient measured in human vocal folds, 0oOQo0:5 (Baken and Orlikoff, 2000), the OQ values

from 0 to 0.7 obtained here are reasonable.
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Finally, to evaluate the impact forces of the vocal folds resulting from the Hertz model it is useful to relate these to

the impact stress, which is easier to measure in the real vocal folds. Impact stress s (Pa) is defined as the impact force
divided by the contact area. The maximum impact stress smax can be calculated as the maximum value in one oscillation
period according to the formula (Brepta and Prokopec, 1972):

smax ¼
3

2

FH;max

pR2
; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
r
ð1� n2Þ

E
FH;max

3

r
, (34)

where FH;max ¼ maxt2ht;tþTi FH ðtÞ is the maximum contact force (20) during the oscillatory period T and R is the

maximum contact radius.

The calculated results are presented in Fig. 11, where the maximum impact stress smax is shown for two glottal half-
gaps of 0.2 and 0.5mm as a function of the pressure in the lungs. Each curve begins at a corresponding value of

the phonation threshold pressure ðPthÞ, at which the impacts are none or very small and thus smax ffi 0, and ends at the

phonation instability pressure. The threshold pressure smax increases with Plungs and reaches its maximum at

the phonation instability pressure, where for the smaller g it is possible to see a plateau. The calculated values

ð0osmaxo3 kPaÞ for the maximum impact stress in Fig. 11 compare well to the range of the impact stress values
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measured on the real vocal folds (Jiang and Titze, 1994; Hess et al., 1998; Verdolini et al., 1999), and indicate that the

impact forces implemented in the model are not far from reality.
6. General discussion and conclusion

Perhaps the most dominant feature of the current model advancement is the inclusion of the Hertz model, which

expresses the impact force as a function of vocal-fold curvature and material parameters of the vocal-fold tissue. Such a

feature is strategically advantageous for studying potential mechanisms of vocal-fold damage through self-exposure to

vibration (Titze et al., 2003): thinner vocal folds are generally exposed to different collision forces than thicker vocal

folds. In this respect, the Hertz model can be considered more realistic than the abruptly changing of spring stiffness

(Ishizaka and Flanagan, 1972), which has been used in other low-order vocal-fold models. The Hertz model is

noticeably easier to use than, for example, the finite-element models (Gunter, 2003), but further justification of the

Hertz model is needed and the tissue parameters still need more experimental data to rely on. Nevertheless, the good

correspondence of the impact stress values reported in human vocal folds with the values calculated here makes the

model a promising tool for future investigations of the factors related to vocal-fold collisions.

While the curved surface of the vocal folds is suitable for implementation of the Hertz model of impacts, the

mathematical expression of the aerodynamic forces is more complex than in the models with a straight profile between

the lower and upper margins of the vocal folds. Consequently, features that are relatively easy to implement in straight-

profile vocal-fold models, such as the dependency of the flow-separation point on the divergence of the glottal channel

(Pelorson et al., 1994; Lous et al., 1998; Lucero, 1999; Drioli, 2005) require calculating the complex integral functions

given in Eq. (14) for every successive time step in this model. The simulations are then highly time-consuming.

Fortunately, the flow-separation point is not expected to travel very far from the upper vocal-fold edge in our model,

because the particularly curved geometry reduces the divergence of the oscillating glottal channel to only an exit part,

which is relatively short. To avoid excessive complexity, the flow-separation point was therefore fixed to the upper

vocal-fold edge. Such a simplification appears acceptable here: the calculated stability boundaries approximately

correspond to the measured thresholds of phonation in humans and reasonably relate to the conditions and mechanism

for starting the vocal-fold vibration. When the instability boundaries for flutter of the aeroelastic system are crossed, the

energy transfer from the air-flow to the vocal folds starts to maintain the self-oscillations.

The vibration and stability characteristics obtained for the system studied appear to be important in further research

on modelling of the vocal-fold vibration, or in design of artificial aids and vocal-fold replacements for possible use in

laryngology. Considering the good correspondence of the model behaviour and its output variables to behaviour and

data observed in humans, the model is expected to be useful in studying phenomena and estimating values that are

difficult to observe and measure in the living vocal folds.
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Appendix A

The coefficients KiðxÞ ði ¼ 1; 2; . . . ; 16Þ in Eq. (11) for the pressure ~pðx; tÞ on the surface of the vibrating element were
calculated using the symbolic manipulation capabilities of the Mathematica software and expressed in the following

equations:

K1ðxÞ ¼ �1
2

L21U
2
0½I

0
3ðLÞ�

2 þ 1
2

L21U
2
0½I

0
3ðxÞ�

2 � L1U0I
0
3ðLÞI

0
4ðLÞ �

1
2
½I 04ðLÞ�

2 þ L1U0I
0
3ðxÞI

0
4ðxÞ þ

1
2
½I 04ðxÞ�

2, (A.1)

K2ðxÞ ¼ U0ŪðLÞI 03ðLÞ � U0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
ŪðxÞI 03ðxÞ � ŪðLÞI 05ðLÞ þ ŪðxÞI 05ðxÞ, (A.2)

K3ðxÞ ¼ �1
2

U2
0½I

0
3ðLÞ�

2 þ 1
2

U2
0½I

0
3ðxÞ�

2 þ U0I
0
3ðLÞI

0
5ðLÞ �

1
2
½I 05ðLÞ�

2 � U0I
0
3ðxÞI

0
5ðxÞ þ

1
2
½I 05ðxÞ�

2, (A.3)

K4ðxÞ ¼ �1
2
½I 01ðLÞ�

2 þ 1
2
½I 01ðxÞ�

2, (A.4)
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K5ðxÞ ¼ U0I3ðLÞ � U0I3ðxÞ � I5ðLÞ þ I5ðxÞ � ŪðLÞI 02ðLÞ þ ŪðxÞI 02ðxÞ, (A.5)

K6ðxÞ ¼ U0I
0
2ðLÞI

0
3ðLÞ � U0I

0
2ðxÞI

0
3ðxÞ � I 02ðLÞI

0
5ðLÞ þ I 02ðxÞI

0
5ðxÞ, (A.6)

K7ðxÞ ¼ �1
2
½I 02ðLÞ�

2 þ 1
2
½I 02ðxÞ�

2, (A.7)

K8ðxÞ ¼ �L1U0I3ðLÞ þ L1U0I3ðxÞ � I4ðLÞ þ I4ðxÞ � ŪðLÞI 01ðLÞ þ ŪðxÞI 01ðxÞ, (A.8)

K9ðxÞ ¼ �L1U0I
0
1ðLÞI

0
3ðLÞ þ L1U0I

0
1ðxÞI

0
3ðxÞ � I 01ðLÞI

0
4ðLÞ þ I 01ðxÞI

0
4ðxÞ, (A.9)

K10ðxÞ ¼ U0I
0
1ðLÞI

0
3ðLÞ � U0I

0
1ðxÞI

0
3ðxÞ � I 01ðLÞI

0
5ðLÞ þ I 01ðxÞI

0
5ðxÞ, (A.10)

K11ðxÞ ¼ �I 01ðLÞI
0
2ðLÞ þ I 01ðxÞI

0
2ðxÞ, (A.11)

K12ðxÞ ¼ �L1U0ŪðLÞI 03ðLÞ þ L1U0ŪðxÞI 03ðxÞ � ŪðLÞI 04ðLÞ þ ŪðxÞI 04ðxÞ, (A.12)

K13ðxÞ ¼ L1U
2
0½I

0
3ðLÞ�

2 � L1U
2
0½I

0
3ðxÞ�

2 þ U0I
0
3ðLÞI

0
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0
3ðxÞI

0
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0
3ðLÞI
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0
5ðxÞ þ I 04ðxÞI

0
5ðxÞ, ðA:13Þ

K14ðxÞ ¼ �L1U0I
0
2ðLÞI

0
3ðLÞ þ L1U0I

0
2ðxÞI

0
3ðxÞ � I 02ðLÞI

0
4ðLÞ þ I 02ðxÞI

0
4ðxÞ, (A.14)

K15ðxÞ ¼ �I1ðLÞ þ I1ðxÞ; K16ðxÞ ¼ �I2ðLÞ þ I2ðxÞ, (A.15)

where

I1ðxÞ ¼
1

2

Z x

0

xðx� 2L1Þ=H̄ðxÞdx; I2ðxÞ ¼

Z x

0

x=H̄ðxÞdx; I3ðxÞ ¼

Z x

0

1=H̄ðxÞdx,

I4ðxÞ ¼

Z x

0

ðx� L1ÞŪðxÞ=H̄ðxÞdx; I5ðxÞ ¼

Z x

0

ŪðxÞ=H̄ðxÞdx; H̄ðxÞ ¼ H0 � aðxÞ, ðA:16Þ

I 0iðxÞ ði ¼ 1; . . . ; 5Þ are the derivatives of the functions I iðxÞ and the mean flow velocity ŪðxÞ is given by the formula (9).
Appendix B

The elements of aerodynamic mass M̂, damping B̂ and stiffness K̂ matrices in the equations of motion (24) for the

linear approximation are given by

M̂ ¼

L

l
j1 �

1

2
i1ð1Þ

� �
2j2 � i2ð1Þ

L

l
j10 �

1

2
i1ð1Þ

� �
2j11 � i2ð1Þ

2
66664

3
77775; B̂ ¼

L

l
ð2j3 þ j7 � j20Þ 2ðj4 � j7Þ þ j21

L

l
ð2j12 þ j16 � j20Þ 2ðj13 � j16Þ þ j21

2
664

3
775,

K̂ ¼

L

l
ð2j5 þ j8 � j22Þ 2ðj6 � j8Þ þ j23

L

l
ð2j14 þ j17 � j22Þ 2ðj15 � j17Þ þ j23

2
664

3
775, ðB:1Þ

where

j1 ¼

Z 1

0

i1ðzÞð1� zÞdz; j2 ¼

Z 1

0

i2ðzÞð1� zÞdz; j3 ¼

Z 1

0

g1ðzÞð1� zÞdz, (B.2)

j4 ¼

Z 1

0

g2ðzÞð1� zÞdz; j5 ¼

Z 1

0

g4ðzÞð1� zÞdz; j6 ¼

Z 1

0

g5ðzÞð1� zÞdz, (B.3)

j7 ¼

Z 1

0

i3ðzÞð1� zÞdz; j8 ¼

Z 1

0

g3ðzÞð1� zÞdz; j10 ¼

Z 1

0

i1ðzÞzdz, (B.4)
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j11 ¼

Z 1

0

i2ðzÞzdz; j12 ¼

Z 1

0

g1ðzÞzdz; j13 ¼

Z 1

0

g2ðzÞzdz, (B.5)

j14 ¼

Z 1

0

g4ðzÞzdz; j15 ¼

Z 1

0

g5ðzÞzdz; j16 ¼

Z 1

0

i3ðzÞzdz; j17 ¼

Z 1

0

g3ðzÞzdz, (B.6)

i1ðzÞ ¼

Z z

0

G�1ðxÞxðx� 1Þdx; i2ðzÞ ¼

Z z

0

G�1ðxÞxdx, (B.7)

i3ðzÞ ¼

Z z

0

G�1ðxÞdx; i4ðzÞ ¼

Z z

0

G�2ðxÞ x�
1

2

� �
dx; i5ðzÞ ¼

Z z

0

G�2ðxÞdx, (B.8)

g1ðzÞ ¼ i4ðzÞ þ
1
2

G�2ðzÞzðz � 1Þ; g2ðzÞ ¼ i5ðzÞ þ G�2ðzÞz, (B.9)

g3ðzÞ ¼ G�2ðzÞ; g4ðzÞ ¼ z �
1

2

� �
G�3ðzÞz; g5ðzÞ ¼ G�3ðzÞ, (B.11)

j20 ¼
1
2

i3ð1Þ þ g1ð1Þ; j21 ¼ i3ð1Þ � g2ð1Þ, (B.12)

j22 ¼ g4ð1Þ þ
1
2

g3ð1Þ; j23 ¼ g3ð1Þ � g5ð1Þ, (B.13)

GðxÞ ¼ 1�
aðxLÞ

H0
. (B.14)
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